Metabolic Syndrome, Cardiovascular Disease and the Hair Growth Cycle: Addressing hair growth disruptions using Nourkrin® with Marilex® as a proteoglycan replacement therapy: A concise review
Main Article Content
Abstract
Alopecia is associated with an increased risk of coronary heart disease, and it appears that there is a relationship between the degree of hair loss and the risk of coronary heart disease, meaning, the greater the severity of alopecia, the greater the risk of coronary heart disease. Alopecia is also associated with an increased risk of hypertension, hyperinsulinemia, insulin resistance, metabolic syndrome as well as elevated serum total cholesterol and triglyceride levels. It has not been definitively established whether patients with androgenetic alopecia have a higher cardiovascular risk or prevalence of metabolic syndrome, and results of recent studies indicate that androgenetic alopecia patients do not show differences in insulin resistance or the prevalence of metabolic syndrome. However, androgenetic alopecia patients do show a higher cardiovascular risk, characterised by increased inflammatory parameters and Lp(a) levels. Data collected from female populations are scarce, but it would be interesting to extend our clinical knowledge with this type of data to further our understanding of the connection between androgenetic alopecia, metabolic syndrome and cardiovascular risk. The divergence in results from different studies done in this context may simply be a result of the composition of the study populations with respect to age, gender, severity of alopecia, sample size and perhaps ethnicity. In this connection, a large group of androgenetic alopecia patients is necessary, including different representative groups and varying severities of alopecia. Furthermore, it is recommended that all women and men with androgenetic alopecia be thoroughly examined and that lifestyle changes are made early on to reduce the risk of various problems associated with metabolic syndrome, since androgenetic alopecia can be considered an early marker of metabolic syndrome.
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
Paus R, Olsen EA, Messenger AG. Hair growth disorders. In: Goldsmith LA, Katz SI, Gilchrest BA, Paller, AS, Leffell DJ, Wolff K, eds. Fitzpatrick’s Dermatology in General Medicine. 7th ed. New York, NY: McGraw-Hill; 2008: 753-777. Ref.: https://goo.gl/Rm6pUQ
Fulop T, Tessier D, Carpentier A. The metabolic syndrome. Pathologie Biologie. 2006; 54: 375-386. Ref.: https://goo.gl/NVS9WU
Acibucu F, Kayatas M, Candan F. The association of insulin resistance and metabolic syndrome in early androgenetic alopecia. Singapore Med J. 2010; 51: 931-936. Ref.: https://goo.gl/Kqs69v
Mumcuoglu C, Ekmekci TR, Ucak S. The investigation of insulin resistance and metabolic syndrome in male patients with early-onset androgenetic alopecia. Eur J Dermatol. 2011; 21: 79-82. Ref.: https://goo.gl/zBa1TX
Nermeen SA, Fattah A, Yasser W, Darwish. Androgenetic alopecia and insulin resistance: are they truly associated?. Int J Dermatol. 2011; 50: 417-422. Ref.: https://goo.gl/77MFB6
Matilainen V, Koskela P, Keinänen-Kiukaanniemi S. Early androgenetic alopecia as a marker of insulin resistance. Lancet. 2000; 356: 1165-1166. Ref.: https://goo.gl/UZC7eS
Matilainen V, Laakso M, Hirsso P, Koskela P, Rajala U, et al. Hair loss, insulin resistance, and heredity in middle-aged women. A population-based study. J Cardiovasc Risk. 2003; 10: 227-231. Ref.: https://goo.gl/jPPG7b
Nabaie L, Kavand S, Robati RM, Sarrafi-rad N, Kavand S, et al. Androgenetic alopecia and insulin resistance are they really related? Clin Exp Dermatol. 2009; 34: 694-697. Ref.: https://goo.gl/JQhBQx
Lie C, Liew CF, Oon HH. Alopecia and metabolic syndrome. Clin Dermatol. 2018; 36: 54-61. Ref.: https://goo.gl/AnSNZT
Trieu N, Eslick GD. Alopecia and its association with coronary heart disease and cardiovascular risk factors: a meta-analysis. Int J Cardiol. 2014; 176: 687-695. Ref.: https://goo.gl/rWSS8S
Yang CC, Hsieh FN, Lin LY, Hsu CK, Sheu HM, et al. Higher body mass index is associated with greater severity of alopecia in men with male-pattern androgenetic alopecia in Taiwan: a cross-sectional study. J Am Acad Dermatol. 2014; 70: 297-302. Ref.: https://goo.gl/t6DVLt
LoPresti P, Papa CM, Kligman AM. Hot comb alopecia. Arch Dermatol. 1968; 98: 234-238. Ref.: https://goo.gl/B6nK9G
Gathers RC, Jankowski M, Eide M, Lim HW. Hair grooming practice and central centrifugal cicatricial alopecia. J Am Acad Dermatol. 2009; 60: 574-578. Ref.: https://goo.gl/3T1ry8
Trüeb RM. Chemotherapy-induced alopecia. Curr Opin Support Palliat Care. 2010; 4: 281-284. Ref.: https://goo.gl/4TqV3p
Su LH, Chen THH. Association of androgenetic alopecia with metabolic syndrome in men: a community-based survey. Br J Dermatol. 2010; 163: 371-377. Ref.: https://goo.gl/mE3Umm
Kyei A, Bergfeld WF, Piliang M. Medical and environmental risk factors for the development of central centrifugal cicatricial alopecia: a population study. Arch Dermatol. 2011; 147: 909-914. Ref.: https://goo.gl/g3scgC
Airas-Santiago S, Gutiérrez-Salmerón MT, Buendía-Eisman A, Girón-Prieto MS, Naranjo-Sintes R. Sex hormone-binding globulin and risk of hyperglycemia in patients with androgenetic alopecia. J Am Acad Dermatol. 2011; 65: 48-53. Ref.: https://goo.gl/1QFUcE
Cakir E. Is prediabetes risk factor for hair loss? Med Hypotheses. 2012; 79: 879. Ref.: https://goo.gl/mcM3ry
Yi SM, Son SW, Lee KG, Kim SH, Lee SK, et al. Gender-specific association of androgenetic alopecia with metabolic syndrome in a middle-aged Korean population. Br J Dermatol. 2012; 167: 306-313. Ref.: https://goo.gl/9sd5t6
El Sayed MH, Abdallah MA, Aly DG, Khater NH. Association of metabolic syndrome with female pattern hair loss in women: a case-control study. Int J Dermatol. 2016; 55: 1131-1137. Ref.: https://goo.gl/DDypmB
Lakka HM, Laaksonen DE, Lakka TA. The metabolic syndrome and total and cardiovascular disease mortality in middle-aged men. JAMA. 2002; 288: 2709-2716. Ref.: https://goo.gl/4icKWt
National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). Third report of the national cholesterol education program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (adult treatment panel III) final report. Circulation. 2002; 106: 3143-3421. Ref.: https://goo.gl/xr9X8B
Gisondi P, Teesari G, Conti A, Piaserico S, Schianchi S, et al. Prevalence of metabolic syndrome in patients with psoriasis: a hospital-based case-control study. Br J Dermatol. 2007; 157: 68-73. Ref.: https://goo.gl/gdfQ3i
Padhi T, Garima. Metabolic syndrome and skin: psoriasis and beyond. Indian J Dermatol. 2013; 58: 299-305. Ref.: https://goo.gl/U7QNnS
Hirsso P, Rajala U, Hiltunen L, Jokelainen J, Nayha S, et al. Obesity and low-grade inflammation among young Finnish men with early-onset alopecia. Dermatology. 2007; 214: 125-129. Ref.: https://goo.gl/ym8vyN
McElwee KJ, Shapiro JS. Promising therapies for treating and/or preventing androgenic alopecia. Skin Therapy Lett. 2012; 17: 1-4. Ref.: https://goo.gl/DZz34d
Thom E. Stress and the hair growth cycle: cortisol-induced hair growth disruption. J Drugs Dermatol. 2016; 15: 1001-1004. Ref.: https://goo.gl/VdLKzF
Bernard BA. Advances in understanding hair growth. F1000Res. 2016; 8: 5. Ref.: https://goo.gl/5gMgT6
Couchman JR. Hair follicle proteoglycans. J Invest Dermatol. 1993; 101: 60-64. Ref.: https://goo.gl/EnhdJh
du Cros DL, LeBaron RG, Couchman JR. Association of versican with dermal matrices and its potential role in hair follicle development and cycling. J Invest Dermatol. 1995; 105: 426-431. Ref.: https://goo.gl/cQiXdj
Kishimoto J, Ehama R, Wu L, Jiang N, Burgeson RE, et al. Selective activation of the versican promoter by epithelial-mesenchymal interactions during hair follicle development. Proc Natl Acad Sci USA. 1999; 96: 7336-7341. Ref.: https://goo.gl/Jcvt9r
Kishimoto J, Soma T, Burgeson R, Hibino T. Versican expression by dermal papilla-regenerated hair follicles-a promising tool for hair-regrowth products. Int J Cosm Sci. 2004; 26: 165-166. Ref.: https://goo.gl/r6GGoS
Soma T, Tajima M, Kishimoto J. Hair cycle-specific expression of versican in human hair follicles. J Dermatol Sci. 2005; 39: 147-154. Ref.: https://goo.gl/W8sHKA
Malgouries S, Thibaut S, Bernard BA. Proteoglycan expression patterns in human hair follicle. Br J Dermatol. 2008; 158: 234-242. Ref.: https://goo.gl/SMw3Mf
Thom E. Nourkrin: objective and subjective effects and tolerability in persons with hair loss. J Int Med Res. 2006; 34: 514-519. Ref.: https://goo.gl/cxMezG
Thom E, Wadstein J, Thom EW, Kingsley DH. Treatment of hair thinning and hair ageing with specific lectican and leucine proteoglycans. A review. J Appl Cosmetol. 2014; 32: 105-115. Ref.: https://goo.gl/ENEHnw
Kingsley DH, Thom E. Cosmetic hair treatments improve quality of life in women with female pattern hair loss. J Appl Cosmetol. 2012; 30: 49-59. Ref.: https://goo.gl/qYyg5Q
Thom E. Pregnancy and the hair growth cycle: anagen induction against hair growth disruption using Nourkrin® with Marilex®, a proteoglycan replacement therapy. J Cosmet Dermatol. 2017; 16: 421-427. Ref.: https://goo.gl/zQv4Ct
Thom E, Thom EW. Lifestyle diseases and the hair growth cycle: a multidisciplinary approach using Nourkrin® with Marilex®, a proteoglycan replacement therapy, for anagen induction and maintenance. Ann Dermatol Res. 2017; 1: 6-11. Ref.: https://tinyurl.com/y3wwz3fa